
wave produces electric polarization along the wave normal. This effect may account for the 
appearance of quasi-static electric fields in the near (nonwave) zone. 
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CAVITATION DYNAMICS IN REFLECTION OF A COMPRESSION 

PULSE FROM THE INTERFACE OF TWO MEDIA 

G. I. Kanel' and A. V. Utkin UDC 532.593:532.533 

This paper is concerned with the reflection of a flat compression pulse, propagating 
in a condensed medium, from the surface of separation with a barrier, whose dynamic rigid- 
ity is low. This situation occurs in experiments on recording separation in low-strength 
substances - glycerol [i] or rubber [2]. In this case, as a result of interference of the 
incident and reflected rarefaction waves negative pressures are generated at some distance 
from the interface in the medium under study; these pressure gives rise to the appearance 
and growth of cavities - cavitation. The processes illustrated in Figs. i and 2, which show 
diagrams of the time t versus Langrangian coordinate h and the pressure p versus the mass 
velocity u of the material. The aim of this work is to determine the motion of the boundar- 
ies of the cavitation zone and the manifestation of this motion on the profile of the veloc- 
ity of the contact boundary. 

We study, in the acoustic approximation, cavitation in a medium whose tensile strength 
is equal to zero. We denote by ii = p01cl and i 2 = p02c2 the dynamic rigidities of the ma- 
terial of interest and the barrier, respectively (p and c are the density and velocity of 
sound in the material). The incident compression pulse propagates along C+ characteristics. 
After the shock wave emerges on the contact surface the reflected rarefaction wave, moving 
along C_ characteristics, appears. The state of the particles of the material must satisfy 
conditions on both C+ and C_ characteristics. 

Let the distribution of the velocity in the incident compression pulse have the form 

u = Uo - -  k ( c ~ t - - h q - H ) ,  u = 0 f o r  h ' c l t ~ H  - -  u o / k .  

Here u0 is the maximum value of the mass velocity and the coefficient k = const. Cavitation 
starts at t = �9 in the section h = 0 (Fig. i), where as a result of the interaction of the 
rarefaction waves the pressure first drops to zero. The left-hand boundary of the cavita- 
tion region is transported by the C_ characteristic passing through this point (the line AB). 
After the reflected rarefaction wave encounters the end of the compression pulse at the 
point t = u0/2kcl, h = H - u0/2k the propagation of the cavitation zone to the left stops. 
From the conditions of compatibility of the States on the C+ and C_ characteristics (Fig. 
2) it follows that the pressure p = 0 is reached at the time �9 = H/c I = (u0/kcl)/((i2)/(il + 

i2)). 
The change in the velocity and pressure on the contact boundary before information 

about the start of cavitation reaches it is described by the equations 
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As a result of the counterpressure exerted by the barrier the right-hand boundary of the 
cavitation region AN (Fig. i) is displaced to the left. We shall find the law governing 
its motion. 

From the condition that the boundary of the cavitation region is equal to zero and the 
requirement that the changes in p and u match along C_ characteristics with the parameters 

and K on the contact boundary, we obtain the velocity along the trajectory AIR: 

In Eq. (2) h R designates the Lagrangian coordinate of the right-hand boundary of the cavita- 
tion region, and x I is determined in terms of h R and will be found below. 

The average velocity of the particles of the material after cavities start to form re- 
mains constant and equal to 

u-( t )  = 2 [Uo - -  2 k  ( H  - -  h )  1, t ~ -r - -  h/c~.  (3) 
The change in the specific volume in the cavitation zone in this case is found from the 
equation 

au/at = voau/ah = 4kvo.  (4) 

The law of motion of the boundary AR is determined as follows. On this boundary the 
cavities collapse under the action of the counterpressure. The mass velocity and the speci- 
fic volume of the medium jump from u- and v- to the left of the boundary to u + and v + = v 0 
to the right of the boundary. Therefore, for the right-hand boundary of the cavitation re- 
gion we can write the equation of conservation of mass analogous to the condition on a shock: 
(D - u-)/v- = (D - u+)/v + (D is the velocity of the boundary in the laboratory coordinate 
system). Taking into account the fact that behind the shock the specific volume of the ma- 
terial is equal to v0, we obtain a differential equation for the trajectory of the right- 
hand boundary of the cavitation zone in Lagrangian coordinates: 

dhR v -F 
e--; = D --  ~+ = ~- _ ; +  (u § - - ~ - ) .  (5)  

The specific volume v- is found by integrating Eq. (4) using the initial condition v- = v0 
at t = r -h/c1: 

v - =  Vo [t + ~ (e , t  + ] + -  ~ ) ] .  (6) 
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After substituting into Eq. 
obtain 

(5) the values of u +, u-, and v- from Eqs.(2), 

dh R c 1 (2 ~-  ~) h R "~- ~C 1 ( t  - -  T) 

dt 2 h R -4- c I (t - -  "~) 

h R = 0 a t  t : ~[~, 5 = (~1 - -  i2)/(~1 ~-- ~2)" 

(3), and (6) we 

(7) 

The initial conditions are given at the singular point of Eq. (7), since at this point 
the numerator and denominator both vanish simultaneously. This singular point is a saddle 
point [3]. Two intersecting straight lines pass through it. One of these lines does not 
satisfy the physical formulation of the problem, while the second line gives the equation 
sought for the trajectory of the right-hand boundary of the cavitation zone: 

h a = A e l ( t - - x ) ,  x ~ t ~  %, A = - - 1 - -  6/4 + V I  + 6 ~ / 1 6 .  ( 8 )  

The  t i m e  x z ,  up  t o  w h i c h  Eq.  ( 8 )  i s  v a l i d ,  i s  f o u n d  f r o m  t h e  c o n d i t i o n  x z = 3x - h R ( ~ l ) / c  1 
and has the form xl = T(3 + h)/(l + A). Thus, the right-hand boundary of the cavitation re- 
gion moves with constant velocity Acx, which does not depend on the slope of the incident 
compression pulse. 

After information about the start of cavitation (t = 2x) arrives at the contact bound- 
ary the law of decrease of the velocity of this boundary changes. For t ~ 2~ the profile of 
the velocity is described by the expression (i), and then it is determined by the wave re- 
flected from the boundary of the cavitation region: 

(t) = il u + t t + Akc l (t 2 9 , 
q + ~  ct ] (q+i2)~ (9) 

2 ~ t ~ t o  = 4 ~ / ( i  §  

I t  c a n  b e  shown a n a l o g o u s l y  t h a t  f o r  x l  ~ t ~ ~2 ( s e e  F i g .  1)  t h e  l i n e  AR i s  d e s c r i b e d  
b y  t h e  e q u a t i o n  

( X  - A 1 T )  ~ ( X  - A2T) v2 = const ,  

X = h R + ( 5 - -  A ) H ,  T = c ~ ( t - - z ) - -  ( 5 - -  A)H, A~, 2 = - - i - -  h /4-+-  ( 1 0 )  

___~t  + A2/i6, A = 62(t + A) / ( I  - -  A),  ?t,2 - -  i ( l  + A L ~ ) /  

~ ( A t  - -  A2 ) .  

The constant is found from the condition that AR is continuous at the time xl. 

As analysis of Eq. (i0) shows, the velocity of the right-hand boundary of the cavita- 
tion region is continuous at t = xx. It decreases in absolute magnitude monotonically with 
time and lies in the range -A1c I < IdhR/dtl ~ -Ac I. 

Figure 3 shows profiles of the velocity of the contact surface of the specimen, having 
zero strength, under conditions of unloading into a medium where rigidity is lower. The 
curve 1 corresponds to the calculation using Eq. (9), and curve 2 was constructed neglect- 
ing the motion of the boundary AR: h R = 0. For 6 = 0.5 (il/i 2 = 3) taking into account the 
motion of the right-hand boundary of the cavitation region gives a correction of greater 
than 26% in the slope of the profile ~(t) on the section MN. 
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Thus, the results of our analysis show that the dynamics of the cavitation zone must 
be taken into account when interpreting experimental profiles obtained for the velocity of 
contact surfaces in the study of separation phenomena in low-strength media. The influence 
of the cavitation zone on the dynamics of a free surface was first observed in [4]. 

. 

2. 

3. 

4. 
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DIFFUSION KINETICS WITH CRYSTAL GROWTH FROM THE GAS 

PHASE 

S. I. Alad'ev UDC 532.526 

A series of relations describing the flow of matter to the surface of a crystal, grow- 
ing in a sealed cylindrical ampul from a gas-vapor medium, was derived in [1-3]. It was as- 
sumed that the growth process is governed by the diffusion kinetics, but the question of 
when this is valid was not studied. At the same time it is necessary to assess the condi- 
tions under which the transport of matter is the limiting stage. It is known that crystals 
which grow in the diffusion region are distinguished by the fact that they exhibit the high- 
est perfection. In addition, the rate of growth and the character of the impurity distribu- 
tion in the case of the diffusion kinetics depend directly on technological parameters, such 
as the temperature gradients, the dimensions of the system, the orientation of the system, 
the pressure, etc. ; this enables efficient control of the growth process. 

Diffusion kinetics is realized in cases when the characteristic transport time ~v is 
much longer than the characteristic time of the phase or chemical transformation itself. 
In the case of growth with the help of gas-transport reactions the chemical transformations 
can be schematically represented in terms of stages: adsorption of gaseous reagents on the 
surface of the growing crystal, chemical reaction between adsorbed molecules, and desorption 
of the reaction products. We denote the duration of each stage by ~a, Xr, and Xd, respec- 
tively. We shall assume that a reaction of the type 

viAl(g) ~- v2A2(g) ~- v3A3(s) 

o c c u r s  on t h e  s o l i d  s u r f a c e .  Here A i d e s i g n a t e  t h e  c h e m i c a l  e l e m e n t s ;  v i  a r e  t h e  s t o i c h i o -  
m e t r i c  c o e f f i c i e n t s ;  g and s a r e  g a s e o u s  and s o l i d  p r o d u c t s .  

A c c o r d i n g  t o  [4 ,  5 ] ,  t h e  c h a r a c t e r i s t i c  t i m e s  o f  t h e  a d s o r p t i o n  s t a g e  x a and d e s o r p t i o n  
s t a g e  x d a r e  

T(O = 6(0 ~ exp (i = a, d), ( 1 )  

where m(i ) is the mass of the adsorbed molecule m a or the desorbed molecule md; U(i ) is the 
activation energy of the corresponding process; k is Boltzmann's constant; T is the tempera- 
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